NGI is one of the largest technical platforms at SciLifeLab. We provide access to technology for sequencing, genotyping and associated bioinformatics support to researchers based in Sweden.
NGI OpenLab: A New Hub for Collaborative Genomics!
We're thrilled to announce the official launch of NGI OpenLab, an innovative space designed to empower genomics research. The lab provides direct access to equipment for quality control (QC), library preparation and a walk-up sequencer for on-the-go sequencing needs.
Boost Your Genomics Research with NGI and Element Biosciences Grants
SciLifeLab’s National Genomics Infrastructure (NGI), in partnership with Element Biosciences, is offering two grant opportunities for Swedish researchers to access advanced sequencing technologies.
SciLifeLab’s National Genomics Infrastructure (NGI), in partnership with Element Biosciences, is offering two grant opportunities for Swedish researchers to access advanced sequencing technologies.
We are seeking a motivated and skilled Postdoctoral Researcher to join the Research and Development (R&D) team at the Uppsala node of the National Genomics Infrastructure (NGI), part of SciLifeLab.
MicroRNAs (miRNAs) are small, non-coding RNA that play a critical role in regulating gene expressions that are important for a multitude of biological processes. In the preparation of miRNA sequencing libraries by using QIAseq miRNA library kit, adapter dimers might occur inadvertently and compromise the sequencing performance.
Want to stay in touch? Join our newsletter!
All the latest updates from NGI direct to your inbox!
African and Asian leopards are highly differentiated at the genomic level.
JLA Paijmans, A Barlow, MS Becker, JA Cahill, J Fickel, DWG Förster, K Gries, S Hartmann, RW Havmøller, K Henneberger, C Kern, AC Kitchener, ED Lorenzen, F Mayer, SJ OBrien, J von Seth, MS Sinding, G Spong, O Uphyrkina, B Wachter, MV Westbury, L Dalén, J Bhak, A Manica, M Hofreiter
Curr. Biol., 31 (9) 1879-0445 (2021)
Leopards are the only big cats still widely distributed across the continents of Africa and Asia. They occur in a wide range of habitats and are often found in close proximity to humans. But despite their ubiquity, leopard phylogeography and population history have not yet been studied with genomic tools. Here, we present population-genomic data from 26 modern and historical samples encompassing the vast geographical distribution of this species. We find that Asian leopards are broadly monophyletic with respect to African leopards across almost their entire nuclear genomes. This profound genetic pattern persists despite the animals' high potential mobility, and despite evidence of transfer of African alleles into Middle Eastern and Central Asian leopard populations within the last 100,000 years. Our results further suggest that Asian leopards originated from a single out-of-Africa dispersal event 500-600 thousand years ago and are characterized by higher population structuring, stronger isolation by distance, and lower heterozygosity than African leopards. Taxonomic categories do not take into account the variability in depth of divergence among subspecies. The deep divergence between the African subspecies and Asian populations contrasts with the much shallower divergence among putative Asian subspecies. Reconciling genomic variation and taxonomy is likely to be a growing challenge in the genomics era.
Multilayered Tuning of Dosage Compensation and Z-Chromosome Masculinization in the Wood White (Leptidea sinapis) Butterfly.
L Höök, L Leal, V Talla, N Backström
Genome Biol Evol, 11 (9) 1759-6653 (2019)
In species with genetic sex determination, dosage compensation can evolve to equal expression levels of sex-linked and autosomal genes. Current knowledge about dosage compensation has mainly been derived from male-heterogametic (XX/XY) model organisms, whereas less is understood about the process in female-heterogametic systems (ZZ/ZW). In moths and butterflies, downregulation of Z-linked expression in males (ZZ) to match the expression level in females (ZW) is often observed. However, little is known about the underlying regulatory mechanisms, or if dosage compensation patterns vary across ontogenetic stages. In this study, we assessed dynamics of Z-linked and autosomal expression levels across developmental stages in the wood white (Leptidea sinapis). We found that although expression of Z-linked genes in general was reduced compared with autosomal genes, dosage compensation was actually complete for some categories of genes, in particular sex-biased genes, but equalization in females was constrained to a narrower gene set. We also observed a noticeable convergence in Z-linked expression between males and females after correcting for sex-biased genes. Sex-biased expression increased successively across developmental stages, and male-biased genes were enriched on the Z-chromosome. Finally, all five core genes associated with the ribonucleoprotein dosage compensation complex male-specific lethal were detected in adult females, in correspondence with a reduction in the expression difference between autosomes and the single Z-chromosome. We show that tuning of gene dosage is multilayered in Lepidoptera and argue that expression balance across chromosomal classes may predominantly be driven by enrichment of male-biased genes on the Z-chromosome and cooption of available dosage regulators.
A genetic map of ostrich Z chromosome and the role of inversions in avian sex chromosome evolution.
H Papoli Yazdi, H Ellegren
Genome Biol Evol, 1759-6653 (2018)
Recombination arrest is a necessary step for the evolution of distinct sex chromosomes. Structural changes, such as inversions, may represent the mechanistic basis for recombination suppression and comparisons of the structural organization of chromosomes as given by chromosome-level assemblies offer the possibility to infer inversions across species at some detail. In birds, deduction of the process of sex chromosome evolution has been hampered by the lack of a validated chromosome-level assembly from a representative of one of the two basal clades of modern birds, Paleognathae. We therefore developed a high-density genetic linkage map of the ostrich Z chromosome and used this to correct an existing assembly, including correction of a large chimeric superscaffold and the order and orientation of other superscaffolds. We identified the pseudoautosomal region (PAR) as a 52 Mb segment (≈60% of the Z chromosome) where recombination occurred in both sexes. By comparing the order and location of genes on the ostrich Z chromosome with that of six bird species from the other major clade of birds (Neognathae), and of reptilian outgroup species, 25 Z-linked inversions were inferred in the avian lineages. We defined Z chromosome organization in an early avian ancestor and identified inversions spanning the candidate sex-determining DMRT1 gene in this ancestor, which could potentially have triggered the onset of avian sex chromosome evolution. We conclude that avian sex chromosome evolution has been characterized by a complex process of probably both Z-linked and W-linked inversions (and/or other processes). This study illustrates the need for validated chromosome-level assemblies for inference of genome evolution.
Whole-Genome Analysis of Domestic Chicken Selection Lines Suggests Segregating Variation in ERV Makeups.
ME Pettersson, P Jern
Genes, 10 (2) 2073-4425 (2019)
Retroviruses have invaded vertebrate hosts for millions of years and left an extensive endogenous retrovirus (ERV) record in the host genomes, which provides a remarkable source for an evolutionary perspective on retrovirus-host associations. Here we identified ERV variation across whole-genomes from two chicken lines, derived from a common founder population subjected to 50 years of bi-directional selection on body weight, and a distantly related domestic chicken line as a comparison outgroup. Candidate ERV loci, where at least one of the chicken lines indicated distinct differences, were analyzed for adjacent host genomic landscapes, selective sweeps, and compared by sequence associations to reference assembly ERVs in phylogenetic analyses. Current data does not support selection acting on specific ERV loci in the domestic chicken lines, as determined by presence inside selective sweeps or composition of adjacent host genes. The varying ERV records among the domestic chicken lines associated broadly across the assembly ERV phylogeny, indicating that the observed insertion differences result from pre-existing and segregating ERV loci in the host populations. Thus, data suggest that the observed differences between the host lineages are best explained by substantial standing ERV variation within host populations, and indicates that even truncated, presumably old, ERVs have not yet become fixed in the host population.
A genetic risk score composed of rheumatoid arthritis risk alleles, HLA-DRB1 haplotypes, and response to TNFi therapy - results from a Swedish cohort study.
X Jiang, J Askling, S Saevarsdottir, L Padyukov, L Alfredsson, S Viatte, T Frisell
Arthritis Res. Ther., 18 (1) 1478-6362 (2016)
To prevent debilitating and irreversible joint damage, rheumatoid arthritis (RA) is often treated with tumor necrosis factor inhibitor (TNFi), but many patients do not respond to this costly therapy. Few predictors for response are known, and it has been proposed that genetic factors which influence the development of RA may also influence disease severity and response to therapy. Several previous studies have attempted to confirm this but results remain inconclusive. We expand on previous studies by including more RA risk alleles, and maximize power by combining them into a genetic risk score.
We linked genotyped RA patients from the Epidemiological Investigation of Rheumatoid Arthritis study to the Swedish Rheumatology Quality Register, identifying patients who started a TNFi as their first biological disease-modifying anti-rheumatic drug, with a return visit within 2-8 months after treatment start (N = 867). We calculated risk scores from 76 established RA risk SNPs, and four HLA-DRB1 amino acid positions, and tested whether risk scores or individual genetic risk factors could predict the European League Against Rheumatism (EULAR) response.
We found no association between any of the risk scores or HLA-DRB1 haplotypes and EULAR response, neither overall nor stratified by anti-citrullinated protein/peptide antibody (ACPA) status. When evaluating each of the 76 SNPs, we found that the number of SNPs presenting significant associations was not higher than expected by chance (5/76 SNPs had p < 0.05 in ACPA-positive RA, 4/76 in ACPA-negative RA).
Overall, known RA risk SNPs do not predict response to TNFi, either individually or when combined into a risk score. This does not support the hypothesis that genes influencing RA onset would also influence its prognosis and treatment response.
GBS-MeDIP: A protocol for parallel identification of genetic and epigenetic variation in the same reduced fraction of genomes across individuals.
S Rezaei, J Uffenorde, O Gimm, MA Hosseinpour Feizi, S Miemczyk, LL Coutinho, P Jensen, C Guerrero-Bosagna, F Pértille
STAR Protoc, 3 (1) 2666-1667 (2022)
The GBS-MeDIP protocol combines two previously described techniques, Genotype-by-Sequencing (GBS) and Methylated-DNA-Immunoprecipitation (MeDIP). Our method allows for parallel and cost-efficient interrogation of genetic and methylomic variants in the DNA of many reduced genomes, taking advantage of the barcoding of DNA samples performed in the GBS and the subsequent creation of DNA pools, then used as an input for the MeDIP. The GBS-MeDIP is particularly suitable to identify genetic and methylomic biomarkers when resources for whole genome interrogation are lacking.
DNA methylation profiling of pediatric B-cell lymphoblastic leukemia with KMT2A rearrangement identifies hypomethylation at enhancer sites.
AK Bergmann, G Castellano, J Alten, O Ammerpohl, J Kolarova, J Nordlund, JI Martin-Subero, M Schrappe, R Siebert
Deregulation of the epigenome is an important pathogenetic mechanism in acute lymphoblastic leukemia (ALL) with lysine (K)-specific methyltransferase 2A rearrangement (KMT2Ar). We performed array-based DNA methylation profiling of KMT2Ar ALL cells from 26 children in comparison to normal B-cell precursors. Significant changes in DNA methylation in KMT2Ar ALL were identified in 2,545 CpG loci, influenced by age and the translocation partners AFF1 and MLLT1. In KMT2Ar ALL, DNA methylation loss was enriched at enhancers and for certain transcription factor binding sites such as BCL11A, EBF, and MEF2A. In summary, DNA methylation changes in KMT2Ar ALL target enhancers, genes involved in leukemogenesis and normal hematopoiesis, as well as transcription factor networks.
Last Updated: 10th June 2025
This website uses cookies to improve your experience. AcceptRead More
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.