NGI is one of the largest technical platforms at SciLifeLab. We provide access to technology for sequencing, genotyping and associated bioinformatics support to researchers based in Sweden.
NGI OpenLab: A New Hub for Collaborative Genomics!
We're thrilled to announce the official launch of NGI OpenLab, an innovative space designed to empower genomics research. The lab provides direct access to equipment for quality control (QC), library preparation and a walk-up sequencer for on-the-go sequencing needs.
NGI, in collaboration with 10x Genomics, is sponsoring a grant program offering a free 4-reaction Visium HD 3′ kit to support innovative investigators in Sweden
The transcription of genetic information into (m)RNA and the translation of mRNA into proteins regulate cellular functions and differentiation of cells into various tissues. By analyzing the type and amount of mRNA, gene expression studies are crucial in health and disease.
Autosomal Recessive Osteogenesis Imperfecta Caused by a Novel Homozygous COL1A2 Mutation
A Costantini, S Tournis, A Kämpe, N Ul Ain, F Taylan, A Doulgeraki, O Mäkitie
Calcif Tissue Int, 103 (3) 0171-967X (2018)
Osteogenesis imperfecta (OI) is a skeletal dysplasia characterized by brittle bones and extraskeletal manifestations. The disease phenotype varies greatly. Most commonly, OI arises from monoallelic mutations in one of the two genes encoding type I collagen, COL1A1 and COL1A2 and is inherited as an autosomal dominant trait. Here, we describe a consanguineous family with autosomal recessive OI caused by a novel homozygous glycine substitution in COL1A2, NM_000089.3: c.604G>A, p.(Gly202Ser), detected by whole-genome sequencing. The index patient is a 31-year-old Greek woman with severe skeletal fragility. She had mild short stature, low bone mineral density of the lumbar spine and blue sclerae. She had sustained multiple long bone and vertebral fractures since childhood and had been treated with bisphosphonates for several years. She also had an affected sister with similar clinical manifestations. Interestingly, the parents and one sister, all carriers of the COL1A2 glycine mutation, did not have manifestations of OI. In summary, we report on autosomal recessive OI caused by a homozygous glycine-to-serine substitution in COL1A2, leading to severe skeletal fragility. The mutation carriers lacked OI manifestations. This family further expands the complex genetic spectrum of OI and underscores the importance of genetic evaluation for correct genetic counselling.
Asymmetric introgression reveals the genetic architecture of a plumage trait.
GA Semenov, E Linck, ED Enbody, RB Harris, DR Khaydarov, P Alström, L Andersson, SA Taylor
Nat Commun, 12 (1) 2041-1723 (2021)
Genome-wide variation in introgression rates across hybrid zones offers a powerful opportunity for studying population differentiation. One poorly understood pattern of introgression is the geographic displacement of a trait implicated in lineage divergence from genome-wide population boundaries. While difficult to interpret, this pattern can facilitate the dissection of trait genetic architecture because traits become uncoupled from their ancestral genomic background. We studied an example of trait displacement generated by the introgression of head plumage coloration from personata to alba subspecies of the white wagtail. A previous study of their hybrid zone in Siberia revealed that the geographic transition in this sexual signal that mediates assortative mating was offset from other traits and genetic markers. Here we show that head plumage is associated with two small genetic regions. Despite having a simple genetic architecture, head plumage inheritance is consistent with partial dominance and epistasis, which could contribute to its asymmetric introgression.
Environmental and genetic factors in the development of anticitrullinated protein antibodies (ACPAs) and ACPA-positive rheumatoid arthritis: an epidemiological investigation in twins.
AH Hensvold, PK Magnusson, V Joshua, M Hansson, L Israelsson, R Ferreira, PJ Jakobsson, R Holmdahl, L Hammarström, V Malmström, J Askling, L Klareskog, AI Catrina
Ann. Rheum. Dis., 74 (2) 1468-2060 (2015)
To investigate the role of genetic and environmental factors in the development of anticitrullinated protein antibodies (ACPA) and ACPA-positive rheumatoid arthritis (RA) in a twin cohort.
A total of 12 590 twins were analysed for the presence of ACPAs (CCP2 ELISA), HLA-DRB1 shared epitope (SE) gene alleles, and exposure to smoking. Twins with established RA were identified in national public care registers. Antibody reactivities against citrullinated and native forms of α-enolase, vimentin, fibrinogen and type II collagen peptides were tested by ELISA in anti-CCP2-positive subjects and their cotwins. Structural equation models and ORs for the development of ACPA and ACPA-positive RA were computed for smokers and SE carriers.
A total of 2.8% (350/12 590) of the twins were ACPA positive, and 1.0% (124/12 590) had ACPA-positive RA. Most of the variability in the ACPA status was accounted for by non-shared environmental or stochastic factors (78%, 95% CI 55% to 100%) rather than shared environmental and genetic factors. Analysis of specific risk factors revealed an association between smoking and SE and the presence of ACPAs. Twins with ACPA-positive RA were more frequently SE positive than twins with ACPAs without RA. Reactivities against multiple citrullinated peptides were present in most twins with ACPA-positive RA but in fewer twins with ACPAs without RA.
Environment, lifestyle and stochastic factors may be more important than genetics in determining which individuals develop ACPAs. Genetic factors (particularly SE) may have a relatively larger role in determining which ACPA-positive individuals will ultimately develop arthritis.
Paralogization and New Protein Architectures in Planctomycetes Bacteria with Complex Cell Structures.
M Mahajan, B Yee, E Hägglund, L Guy, JA Fuerst, SGE Andersson
Mol. Biol. Evol., 37 (4) 1537-1719 (2020)
Bacteria of the phylum Planctomycetes have a unique cell plan with an elaborate intracellular membrane system, thereby resembling eukaryotic cells. The origin and evolution of these remarkable features is debated. To study the evolutionary genomics of bacteria with complex cell architectures, we have resequenced the 9.2-Mb genome of the model organism Gemmata obscuriglobus and sequenced the 10-Mb genome of G. massiliana Soil9, the 7.9-Mb genome of CJuql4, and the 6.7-Mb genome of Tuwongella immobilis, all of which belong to the family Gemmataceae. A gene flux analysis of the Planctomycetes revealed a massive emergence of novel protein families at multiple nodes within the Gemmataceae. The expanded protein families have unique multidomain architectures composed of domains that are characteristic of prokaryotes, such as the sigma factor domain of extracytoplasmic sigma factors, and domains that have proliferated in eukaryotes, such as the WD40, leucine-rich repeat, tetratricopeptide repeat and Ser/Thr kinase domains. Proteins with identifiable domains in the Gemmataceae have longer lengths and linkers than proteins in most other bacteria, and the analyses suggest that these traits were ancestrally present in the Planctomycetales. A broad comparison of protein length distribution profiles revealed an overlap between the longest proteins in prokaryotes and the shortest proteins in eukaryotes. We conclude that the many similarities between proteins in the Planctomycetales and the eukaryotes are due to convergent evolution and that there is no strict boundary between prokaryotes and eukaryotes with regard to features such as gene paralogy, protein length, and protein domain composition patterns.
Recent increased identification and transmission of HIV-1 unique recombinant forms in Sweden.
U Neogi, AB Siddik, P Kalaghatgi, M Gisslén, G Bratt, G Marrone, A Sönnerborg
Sci Rep, 7 (1) 2045-2322 (2017)
A temporal increase in non-B subtypes has earlier been described in Sweden by us and we hypothesized that this increased viral heterogeneity may become a hotspot for the development of more complex and unique recombinant forms (URFs) if the epidemics converge. In the present study, we performed subtyping using four automated tools and phylogenetic analysis by RAxML of pol gene sequences (n = 5246) and HIV-1 near full-length genome (HIV-NFLG) sequences (n = 104). A CD4+ T-cell decline trajectory algorithm was used to estimate time of HIV infection. Transmission clusters were identified using the family-joining method. The analysis of HIV-NFLG and pol gene described 10.6% (11/104) and 2.6% (137/5246) of the strains as URFs, respectively. An increasing trend of URFs was observed in recent years by both approaches (p = 0·0082; p < 0·0001). Transmission cluster analysis using the pol gene of all URFs identified 14 clusters with two to eight sequences. Larger transmission clusters of URFs (BF1 and 01B) were observed among MSM who mostly were sero-diagnosed in recent time. Understanding the increased appearance and transmission of URFs in recent years could have importance for public health interventions and the use of HIV-NFLG would provide better statistical support for such assessments.
Vegetation, topography, and soil depth drive microbial community structure in two Swedish grasslands.
D Guasconi, J Juhanson, KE Clemmensen, SAO Cousins, G Hugelius, S Manzoni, N Roth, P Fransson
FEMS Microbiol. Ecol., 99 (8) 1574-6941 (2023)
Soil microbial diversity and community composition are shaped by various factors linked to land management, topographic position, and vegetation. To study the effects of these drivers, we characterized fungal and bacterial communities from bulk soil at four soil depths ranging from the surface to below the rooting zone of two Swedish grasslands with differing land-use histories, each including both an upper and a lower catenary position. We hypothesized that differences in plant species richness and plant functional group composition between the four study sites would drive the variation in soil microbial community composition and correlate with microbial diversity, and that microbial biomass and diversity would decrease with soil depth following a decline in resource availability. While vegetation was identified as the main driver of microbial community composition, the explained variation was significantly higher for bacteria than for fungi, and the communities differed more between grasslands than between catenary positions. Microbial biomass derived from DNA abundance decreased with depth, but diversity remained relatively stable, indicating diverse microbial communities even below the rooting zone. Finally, plant-microbial diversity correlations were significant only for specific plant and fungal functional groups, emphasizing the importance of functional interactions over general species richness.
The Evolution of Dark Matter in the Mitogenome of Seed Beetles
This website uses cookies to improve your experience. AcceptRead More
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.